Benzazole-N–BH₃ Adducts. Reductive Transposition of 2-Benzimidazole, 2-Benzothiazole, and 2-Benzoxazole N–BH₃ Adducts to 1,3,2-Benzimidazaborole, 1,3,2-Benzoxaborole, and 1,3,2-Benzothiazaborole

Itzia I. Padilla-Martínez*

Departamento de Química, Unidad Profesional Interdisciplinaria de Biotecnología del IPN, Av. Acueducto s/n Barrio La Laguna Ticomán, México D. F. 07340, México

Noemí Andrade-López, Miguel Gama-Goicochea, Eréndira Aguilar-Cruz, Alejandro Cruz, and Rosalinda Contreras*

Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México D.F. 07000, México

Hugo Tlahuext

Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa. Cuernavaca Morelos, México

Received 25 March 1996; revised 29 April 1996

ABSTRACT

1,3,2-Benzimidazaborole, 1,3,2-benzoxaborole, and 1,3,2-benzothiazaborole were synthesized from the corresponding 2-benzazole N–BH₃ and 2-benzazole S– BH₃ adducts through a reductive transposition from the isolobal fragment X– $C(sp^2) = N(sp^2) - B(sp^3)$ (X = N, O, S) to the fragment X– $B(sp^2) = N(sp^2) - C(sp^3)$. N–BH₃ substitution shifts to lower frequencies 4-H, C-3a, and C-7a resonances. The X-ray diffraction analysis of 2-(o-methoxyphenyl)benzothiazole N–BH₃ adduct is reported. Two new tetracyclic boron-bridged compounds were observed as by-products (6,9-(ethyl)-

Dedicated to Professor Louis D. Quin on the occasion of his retirement from the University of Massachusetts at Amherst. *To whom correspondence should be addressed.

diaza-2-oxa-1-bora[3,4,7,8]-dibenzobycyclo[4.3.0]nona-3,7-diene, 6d, and 8-aza-9-oxa-2-thia-1-bora-[3,4,7,8]dibenzobycyclo[3.4.0]nona-3,7-diene, 15d, when 2-(o-methoxyphenyl)-1-ethylbenzimidazole-BH₃ 6b and 2-(o-methoxyphenyl)-benzothiazole-BH₃ 15b adducts were heated. © 1996 John Wiley & Sons, Inc.

INTRODUCTION

In this work, a novel, clean reaction to obtain 1,3,2benzazaborole derivatives A (Scheme 1) from the corresponding benzazole-N-BH₃ and S-BH₃ adducts is reported. The boron-nitrogen dative bond in imidazole derivatives is a very stable bond [1]. However, recent studies have been shown that imidazole

SCHEME 1

adducts **D** react at a high temperature with themselves to form the imidazabole compounds **E** and **F** [2] (Scheme 2). Herein, similar reactions for benzene-fused derivatives—benzimidazole, benzoxazole, and benzothiazole borane adducts—were studied.

The importance of benzoborolane as a reducing agent has been increased by the report of Männig and Nöth [3] that rhodium complexes catalyze hydroboration of alkenes with 1,3,2-benzodioxaborolane **B** [4,5]. These reagents are added regioselectively to C = C bonds in the presence of more reactive groups such as ketone or nitrile. Oxazaborolidine derived from pseudoephedrine C in the presence of rhodium complexes asymmetrically hydroborates styrenes [6]. The 1,3,2-benzazaboroles A studied here are potential reducing agents under the mentioned conditions [5].

RESULTS AND DISCUSSION

Synthesis of $N \rightarrow BH_3$ Adducts

The N-BH, adducts (1b-16b) were synthesized in quantitative yield by reaction of one equivalent of borane-THF complex with each of the 2-substituted-1,3-benzazoles (1a-16a, Scheme 3). The ¹¹B chemical shifts and the ${}^{1}J(B,H)$ coupling constants of benzazole-N-BH₃ adducts are in the typical range for tetracoordinated N-B compounds [7] (Table 1). The general trend in ¹³C-NMR spectra is that C7a and C3a are shifted to lower frequencies because of the decreased electron-attracting effect of X (X = N), O, S) and loss of the deshielding effect of the nitrogen lone pair upon coordination [2] (Tables 2 and 3). The latter effect is similar to that produced by protonation [8]. ¹H-NMR spectra are also sensitive to borane coordination, as shown by the shift to higher frequencies of 4-H (Table 4). Borane coordination produces only a local effect on the chemical shifts of the heterocycle, contrary to that found by protonation, which shifts all ¹H resonances to higher frequencies [8a].

The structure of 15b has been obtained by X-ray diffraction analysis (Figure 1, Table 5). It shows that the N–B length [1.601(7) Å] is in the typical range

SCHEME 2

SCHEME 3 1,3-Benzazaborole compounds (a) and their N-BH₃ adducts (b).

TABLE 1 B-NMR Data $(\delta, J \text{ Hz})$ of [(N–B)-1,3-benzazole]BH₃ Adducts **1b–16b** in CDCl₃ with Et₂O–BF₃ as an External Reference

Comp.	δ 11 B	'J(B, H)	Comp.	δ ''Β	'J(B, H)
1b	-22.9	b⁵	9b	-22.7	97
2b	-22.0	b⁵	10b	-20.6	88
3b ^a	-23.9	b⁵	11b ^a	-22.6	b⁵
4b	-23.3	90	12b	-20.9	97
5b	-22.6	81	13b	- 20.8	92
6b	-21.6	b⁵	14b	- 18.9	89
7b ^a	-21.0	b⁵	15b	- 19.2	73
8b	-21.5	b⁵	16b ^a	-20.1	b⁵

^aln [²H₆] DMSO.

Broad signal.

for an $N(sp^2)$ – $B(sp^3)$ dative bond. The structure of the benzazole five-membered ring changes significantly through borane coordination, in comparison with the free base [9]. The N–C(7) bond length is enlarged 1.318(5) Å [1.280(9) Å (free base)] as well as the C(1)–C(2) bond, 1.397(6) Å [1.372(10) Å], while the S–C(7) is shortened 1.711(4) Å [1.749(8) Å (free base)]. The angle centered on sulfur becomes wider, 90.6(2)° [88.6(4)° (free base)]. These changes as a whole suggest the increase in electronic delo-

Comp.	C2	СЗа	C4	C5	C6	C7	C7a	<i>R</i> ,
1a	155.5	138.5	114.5	121.4	121.4	114.5	138.5	31.1 (CH ₂), 21.5 (CH ₂), 13.8 (CH ₃)
2a	150.9	129.4	114.2	121.3	121.3	114.2	129.4	128.8 (C-11), 127.8 (Č-10), 125.8 (C-9)
3a ^{a,b}	151.2	139.7	113.6	121.2	121.2	113.6	139.7	13.8 (Š–CH ₃)
3a ^{b,c}	152.3	136.4	110.9	121.9	121.9	117.8	144.5	13.8 (S–CH ₃)
4a	150.3	141.6	117.8	120.7	121.0	108.2	133.7	37.4 (N–CH ₂), 13.9 (CH ₃), 12.5 (N–CH ₂ CH ₃)
5a	154.3	142.4	118.7	121.3	121.6	108.8	134.3	37.9 (N–CH ₂), 29.0 (CH ₂), 20.9 (CH ₂), 14.8 (N–CH ₂ CH ₃), 13.7 (CH ₃)
6a	151.4	143.4	119.9	121.8	122.3	109.9	134.8	157.5 (C-9), 134.8 (C-8), 132.1 (C-13), 131.5 (C-11), 120.8 (C-12), 110.0 (C-10), 55.4 (CH₄O), 39.4 (N–CH₂), 14.7 (CH₄), C-8 n.o. ^a
7a ^{a,b}	152.6	142.9	117.4	121.2	121.2	109.2	136.9	29.6 (Ň–ĆH ₂), 14.1 (S–ČH ₂)
8a	163.7	141.5	119.4	124.4	124.1	110.2	151.0	14.4 (CH ₂)
9a	167.1	141.5	119.5	125.1	124.4	110.2	150.8	30.5 (CH ₂), 20.2 (CH ₂), 13.7 (CH ₃)
10a	162.8	142.1	119.9	124.9	124.4	110.4	152.6	131.3 (C-11), 128.7 (C-10), 127.4 (C-9), C-8 n.o. ^a
11a ^{a,b}	165.2	141.4	118.1	124.5	124.0	110.0	151.4	14.1 (S–CH ₃)
12a	165.5	153.1	122.1	125.6	124.4	121.1	135.4	19.8 (CH ₃)
13a	171.9	153.1	122.3	125.7	124.5	121.3	135.0	36.0 (CH ₂), 22.9 (CH ₂), 13.5 (CH ₃)
14a	167.8	154.0	123.0	126.1	125.0	121.4	134.9	133.4 (C-8), 130.8 (C-11), 128.8 (C-10), 127.4 (C-9)
15a	163.0	152.1	122.7	125.8	124.5	121.1	136.1	157.1 (C-9), 131.7 (C-11), 129.4 (C-13), 121.0 (C-12), 110.6 (C-10), 55.5 (CH₃O), C- 8 n.o. ^σ
16aª	167.7	152.8	121.5	126.1	124.0	120.9	134.6	15.4 (S–CH₃)

TABLE 2 ¹³C-NMR Chemical Shifts of Benzazole Free Bases 1a-16a in CDCl₃ with TMS as an External Reference

an.o.: not observed.

calization of the five-membered ring due to $N-BH_3$ coordination [10]. The electron-attracting effect of borane decreases the electron density in the ring, which is compensated by more sulfur participation in the bonding scheme.

Synthesis of $S \rightarrow BH_3$ Adducts

2-Mercaptobenzazoles (17a–19a) exist in an equilibrium involving the iminothiol and thioamide forms (Scheme 4). It has been demonstrated that the thioamide tautomer predominates in solution [11]. For 17a, an additional imidazole intermolecular tautomeric equilibrium also exists.

The reaction of 2-mercaptobenzimidazole (17a), 2-mercaptobenzoxazole (18a), and 2-mercaptobenzothiazole (19a) with BH₃-THF afforded the S \rightarrow BH₃ adducts (¹¹B δ = -22.8, broad, 17b; ¹¹B δ = -21.9, ¹*J* = 86 Hz, 18b; and δ = -22.9, broad, 19b) as the only products. Compound 19b decomposes in solution to the aminoborane 19c [¹¹B δ = 25, *J* (B,H) = 157 Hz]. The 2-mercaptobenzoxazole-S \rightarrow BH₃ adduct (18b) proved to be an unusually stable adduct. The shift to low frequency of C3a, which was characteristic for nitrogen coordination or protonation (Table 6), suggests that it could be stabilized by an intermolecular hydric-protic interaction between the boron hydride moiety and the acidic H–N group [10,12]. The N–BH₃ adduct 18c is discarded from consideration because the C-2 chemical shift remains in the region of the thioamide form (δ 183.2 for 18b in contrast with 167.9 of 11b of the iminothiol form, Scheme 5).

Synthesis of Benzoborole Heterocycles

When the 1,3-benzazole-N \rightarrow BH₃ adducts (1b–16b) and the S \rightarrow BH₃ adducts (17b–19b) were heated in a nitrogen atmosphere, different products were found. For 1b–3b, which bear an N–H acidic proton, nonidentified polymeric material was obtained. Compounds 4b–6b, 8b–10b, 12b–15b, and 17b–19b afforded the boron heterocycles (4c–6c, 8c–10c, 12c– 15c, and 17c–19c) in quantitative yield (Schemes 6 and 7). The ¹¹B-NMR spectra present signals in the typical range for N–BH–N ($\delta \approx 25$), N–BH–O (≈ 28), and N–BH–S (≈ 38) fragments [7] (Table 7). ¹³C-NMR data of 1,3,2-benzazaborole compounds 4c–16c and 20c–27c are summarized in Table 8.

Heating of 1-(ethyl)-2-(o-methoxyphenyl)benzimidazole-BH₃ 6b and 2-(o-methoxyphenyl)benzothiazole-BH₃ 15b at a high temperature af-

In [2H6]DMSO.

PAt 22.5 MHz.

eln [2H7]DMF at ~65°C.

Comp.	C2	СЗа	C4	C5	C6	C7	C7a	R,
1b	154.3	136.0	116.6	122.9	123.7	112.0	130.6	29.1 (CH ₂), 20.3 (CH ₂), 13.8 (CH ₂)
2b	149.7	137.3	116.3	122.8	123.6	111.2	131.0	127.16 (Č-9), 129.50 (Ć-10), 130.50 (C-11), C-8 n.o.ª
3b ^{a,b,c}	154.7	138.9	119.4	123.9	123.9	112.1	133.7	13.9 (S-CH ₂)
4b	150.4	137.0	117.2	124.0	124.2	109.7	131.6	39.3 (N–CH ₂), 14.7 (CH ₃), 11.3 (N–CH ₂ CH ₃)
5b	153.5	137.3	117.6	124.1	124.3	109.8	131.7	39.3 (N–CH ₂), 26.7 (CH ₂), 15.1 (N–CH ₂ <u>CH₃),</u> 14.1 (CH ₃)
6b	148.9	136.9	116.8	123.4	124.0	110.2	131.3	156.9 (Ċ-9), 132.2 (C-11), 131.3 (C-13), 120.0 (C-12), 110.9 (C-10), 55.1 (CH ₃ O), 39.5 (N–CH ₃), 13.9 (CH ₃)
7 b ^{a,b}	149.9	136.9	116.1	124.3	124.7	111.6	133.4	32.0 (N-CH,), 17.0 (S-CH,)
8b	166.4	135.4	116.8	126.8	126.1	111.5	148.2	28.5 (CH ₄)
9b	168.0	135.4	118.0	126.7	126.1	110.9	148.6	28.5 (CH ₂), 19.4 (CH ₂), 13.7 (CH ₃)
10b	162.2	137.0	118.9	127.2	126.3	111.0	148.4	133.3 (C-11), 131.1 (Č-9), 128.6 (C-10), C-8 n.o. ^a
11b ^{a,b}	167.9	135.8	115.2	126.0	125.3	110.8	149.6	13.3 (S–CH ₂)
12b	170.8	147.5	121.7	127.6	126.8	121.4	129.9	18.9 (CH ₂)
13b	176.1	147.6	121.7	127.5	126.7	121.5	130.0	34.2 (CH ₂), 22.0 (CH ₂), 13.8 (CH ₃)
14b	171.3	148.5	122.9	128.0	127.1	121.4	131.1	130.7 (C-9), 131.8 (C-11), 129.9 (C-8), 128.4 (C-10)
15b	168.4	147.5	122.6	127.6	126.9	121.3	131.8	157.4 (C-9), 133.1 (C-11), 131.9 (C-13), 120.2 (C-12), 111.5 (C-10), 55.9 (CH₃O), C- 8 n.o. ^d
16b ^{a,b}	176.9	147.2	118.5	127.6	125.3	122.3	129.9	17.0 (S–CH ₃)

TABLE 3 ¹³C-NMR Chemical Shifts of Benzazole-BH₃ Adducts 1b–16b in CDCl₃ with TMS as an External Reference

AIn [2H, DMSO.

^aAt 22.5 MHz.

eln [2H7]DMF at -20°C.

n.o.: not observed.

FIGURE 1 Structure of 15b obtained by X-ray diffraction analysis.

forded not only 6c (40%) and 15c (60%), respectively, but also the tetracyclic compounds 6d (60%) and

15d (40%), which result from incorporation of boron into the ring system and CH_4 evolution. A possible mechanism is depicted (Scheme 8).

The direct conversion of 1,3-benzazole by reaction with diborane in diglyme to 1,3,2-benzazaborole has been reported [13]. A similar reaction was observed in the reduction of benzothiazolium cations with NaBH₃CN [14]. This conversion implies the reductive transposition of the boron and C-2 atoms, instead of the dimerization and H₂ evolution

X = NEt, O, S

SCHEME 6

Com Com s R N-Et CH₂CH₃ 15c сн₃о N-Et N-Et (CH₂)₃CH₃ 16c 20c S NH 5c 6c CH₃O CH(CH₃)₂ N-CH O 21c 22c N-CH(CH₃)₂ 7c 8c CH₃ CH₂CH₃ N-cyclohexy 00 (CH₂)₃CH₃ 23c 24c 00 9c 10c CH(CH₃); 0 o 110 25c 12c s CH₂CH₃ 26c o 13c 14c s s CH₂)₃CH 27c s

SCHEME 7 1,3,2-Benzazaborole compounds synthesized.

SCHEME 8 Tetracyclic compounds 6d and 15d obtained from N-BH₃ adducts 6b and 15b, respectively.

SCHEME 10

SCHEME 11

observed in imidazabole formation. The difference in reactivity should be based in electronic effects. In this work, similar transposition reactions were found for several amine borane adducts with a common structure involving the fragment X-C(sp^2) = N(sp^2)-B(sp^3) (X = N, O, S) inserted in a five-membered heterocycle [15]. This fragment, after reductive transposition, becomes the fragment X-B(sp^2) = N(sp^2)-C(sp^3) also inserted in a five-membered ring in which the boron atom substitutes the carbon atom in the heterocycle (Scheme 9). This reaction is an example of a chemical reaction in which

SCHEME 12

the product formed is isolobal [16] with the starting material and appears to be a general reaction for N–BH₃ adducts with the characteristics cited earlier. Similar reactions may be involved in reductions with MBH₄ (M = Na, Zn) [17].

The 2-(methylmercapto)benzazole $N \rightarrow BH_3$ adducts (7b, 11b, 16b) were treated under less severe conditions, with an excess of BH₃-THF in refluxing THF. The methylmercapto function was lost, form-

TABLE 4	4 ¹ H-NMR	Chemical	Shifts of	Free Bases	1a-16a an	d Benzazole-BH	Adducts	1b-16b in	CDCl ₃ with	1 TMS as	s an
External	Reference ((δ, <i>J</i> in Hz)					-		Ū		

		Free Bases				Benzaz	Benzazole-BH₃ Adducts		
Comp.	4-H	5-H	6-H	7-H	Comp.	4-H	5-H	6-H	7-H
1a ^[d]	7.51	7.15	7.15	7.51	1b ^[7]	7.85	7.31	7.31	7.47
2a ^[e]	7.61	7.21	7.21	7.61	2b ^[4]	8.03	7.40	7.40	7.60
3a ^[a,f]	7.40	7.10	7.10	7.40	3b[b,c,v]	7.6	7.4	7.4	7.4
4a ^[g]	7.72	7.18	7.18	7.18	4b ^[w]	7.98	7.37	7.37	7.37
5a ^[h]	7.71	7.18	7.18	7.18	5b ^[x]	8.03	7.39	7.39	7.40
6a ^[/]	7.83	7.27	7.27	7.29	6 b ^[y]	8.08	7.34	7.34	7.65
7a ^[a,b,j]	6.10	6.40	6.40	6.40	7b[a,b,z]	7.8	7.4	7.4	7.4
8a ^[k]	7.63	7.25	7.25	7.42	8b[aa]	7.93	7.52	7.49	7.57
9a ^[1]	7.66	7.25	7.21	7.42	9b[bb]	7.92	7.48	7.48	7.58
10a ^[m]	7.78	7.31	7.31	7.51	10b[cc]	8.10	7.49	7.51	7.62
11a ^[a,n]	7.60	7.30	7.30	7.60	11b[a,b,dd]	7.3	7.3	7.3	7.3
12a ^[o]	7.95	7.45	7.34	7.82	12b[##]	8.42	7.62	7.52	7.82
13a ^[p]	7.94	7.92	7.30	7.80	13b ^[//]	8.41	7.63	7.53	7.88
14a ^[q]	8.06	7.42	7.29	7.79	14b[99]	8.60	7.69	7.55	7.89
15a ^[/]	8.05	7.44	7.30	7.86	15b[hh]	8.56	7.69	7.57	7.89
16a ^[a,s]	7.9	7.3	7.3	7.9	16b ^[a,b,ii]	8.1	7.6	7.6	8.1

ing the BH₂–S trimer G [¹¹B δ = -13.7, *J*(B,H) = 123 Hz, ¹³C δ = 18.8, ¹H δ = 2.2] and the N-methyl-1,3,2-benzazaborole (7c, 11c, 16c) compounds (Scheme 10).

The 1,3,2-benzazaborole compounds, 20c-25c and 27c, were prepared by the direct reaction of each of the 1,2-dialkylphenylenediamines, *o*-alkyl-aminophenols, and *o*-alkyl-aminothiophenols, respectively, with one equivalent of BH₃-THF [18] (Scheme 11). The benzazaborole **26c** was obtained by reacting an excess of BH₃-THF with the imine derived from *o*-aminophenol and 2-norbornanone (Scheme 12). The latter method provides a symmetrical N,N'-R₁-1,3,2-benzimidazaborole, in contrast with the reaction starting with benzimidazoles, which affords N-R₁, N'-R₂ 1,3,2-benzimidazaboroles.

EXPERIMENTAL

Materials and Methods

All new compounds were characterized by ¹¹B, ¹H, ¹³C, heteronuclear correlation experiments. 2-Sub-

stituted-1,3-benzimidazoles (1a-2a), 2-substituted-N-alkyl-1,3-benzimidazoles (4a-6a), 2-substituted-1,3-benzoxazoles (8a-10a), and 2-substituted-1,3benzothiazoles (12a-15a) were synthesized by condensation of o-phenylenediamine, N-alkyl-o-phenylenediamines, o-aminophenol, and o-aminothiophenol, respectively, with the appropriate aldehyde or carboxylic acid, according to established procedures [19]. With regard to the preparation of the benzimidazoles (4-6), o-nitroacetanilide was reduced with borane to give the monosubstituted phenylenediamine. Reduction of the nitro group [20] was enabled because of the close proximity of the BH₃ to the nitro group in the intermediate amine-borane adduct. Condensation of o-phenylenediamine, oaminophenol, and o-aminothiophenol with carbon disulfide in alkaline medium afforded the benzazole-2-thione compounds (17a-19a) [21]. After isolation, 17a-19a were treated with one equivalent of metallic sodium and one equivalent of CH₃I to yield 3a, 11a, and 16a, respectively. The synthesis of 7a was also performed by reaction of 3a with sodium followed by methyl iodide [22].

TABLE 5 Selected Bond Lengths (Å) and Angles (°) for 15b

Atoms	Bond Lengths (Å)	Atoms	Bond Lengths (Å)
S-C(1)	1.731(5)	S-C(7)	1.711(4)
O-C(9)	1.351(5)	O-C(14)	1.446(6)
N-C(2)	1.400(6)	N–C(7)	1.318(5)
N–B	1.601(6)	C(1)-C(2)	1.397(6)
C(1)–C(6)	1.397(7)	C(2)–C(3)	1.392(7)
C(3)–C(4)	1.381(7)	C(4)C(5)	1.394(8)
C(5)-C(6)	1.369(7)	C(7)–C(8)	1.471(6)
C(8)-C(9)	1.399(6)	C(8)–C(13)	1.395(7)
C(9)-C(10)	1.383(7)	C(10)-C(11)	1.392(7)
C(11)–C(12)	1.386(8)	C(12)-C(13)	1.368(7)
	Bond		Bond
	Angles		Angles
Atoms	(°)	Atoms	(°)
C(1)-S-C(7)	90.6(2)	C(9)-O-C(14)	117.5(4)
C(2) - N - C(7)	111.8(3)	C(2)-N-B	121.6(3)
C(7)–N–B	126.6(4)	S–Ć(1)–C(2)	109.5(3)
S-C(1)-C(6)	129.5(4)	C(2) - C(1) - C(6)	121.0(4)
N-C(2)-C(1)	113.4(4)	N-C(2)-C(3)	126.0(4)
C(1)–C(2)–C(3)	120.5(4)	C(2)-C(3)-C(4)	117.8(5)
C(3) - C(4) - C(5)	121.6(5)	C(4) - C(5) - C(6)	121.0(5)
C(1)-C(6)-C(5)	118.1(5)	S-C(7)-N	114.6(3)
S-C(7)-C(8)	119.7(3)	N-C(7)-C(8)	125.7(4)
C(7) - C(8) - C(9)	120.4(4)	C(7) = C(8) = C(13)	120.1(4)
C(9) = C(8) = C(13)	119.4(4)	O = O(9) = O(8)	114.9(4)
U = U(9) = U(10)	125.8(4)	U(0) = U(9) = U(10)	100.0(5)
C(11) - C(12) - C(11) C(11) - C(12) - C(13)	120.3(4) 3) 119.7(5)	C(10) = C(11) = C(12) C(8) = C(13) = C(12)	120.2(5) 121.0(5)

TABLE 6 ¹³C Chemical Shifts for 2-Mercaptobenzazole Compounds (17a–19a) and Their Boron Derivatives (17b– 19d) in [${}^{2}H_{6}$]DMSO, Relative to TMS

Comp.	C-2	С-За	C-4	C-5	C-6	C-7	C7a
17aª	168.1	132.4	109.6	122.3	122.3	109.6	132.4
17b ^{b,c,d}	169.2	132.9	109.8	122.6	122.6	109.8	132.9
18aª	181.8	145.4	113.7	121.6	119.2	106.7	151.0
18b ^{b,c,d}	183.2	138.8	114.0	123.7	122.2	108.6	149.2
19aª	189.7	141.2	112.3	127.0	124.0	121.6	129.3
19b ^{a,d,e}	192.5	142.0	114.6	128.6	125.7	123.3	n.o./
19c ^{<i>b,c,d</i>}	191.1	142.1	113.1	127.8	124.8	122.4	130.4
19d ^{a,c,d}	191.5	142.2	112.6	127.8	124.9	122.4	130.9

^aAt 67.8 MHz; ^b at 22.49 MHz; ^aat 0°C; ^ain [²H_e] THF; ^aat -30°C; ⁱnot observed.

Benzazole-BH₃ adducts and benzazaborole compounds were handled under a nitrogen atmosphere using carefully dried glassware and dried solvents. Starting materials such as *o*-phenylenediamine, *o*aminothiophenol, *o*-aminophenol, and 2-methylbenzoxazole were commercial products. BH₃-THF was prepared according to reported methods [18]. N-

TABLE 7	¹¹ B-NMR data (δ , J Hz) of 1,3,2-benzazaborole
Compounds	s 4c–16c and 20c–27c in CDCl ₃ with Et ₂ O–BF ₃ as
an External	Reference

Comp.	δ ''Β	'J(B,H)	Comp.	δ '' B	'J(B,H)
4c	24.4	143	15c	38.4	137
5c	24.5	167	16c	38.0	123
6c	25.1	bª	20c	23	134
7c	25.4	149	21c	23	145
8c	27.5	bª	22c	23	bª
9c	27.8	158	23c	28	168
10c	28.5	bª	24c	28	126
11c	28.1	170	25c	28	167
12c	37.3	bª	26c	28	161
13c	37.5	147	27c	37	156
14c	38.6	178			

Broad signal.

ethyl-1,2-phenylenediamine was synthesized as reported in Ref. [23]. Compounds 1a, 2a, 4a, 5a, 8a-10a, and 12a-14a were prepared as described in Ref. [19a] and 6a and 15a as in Ref. [19b]. Borane adducts 1b-16b were prepared in quantitative yield from 1a-16a [2]. Compounds 20c-27c were prepared as reported for 1,3,2-benzodioxaborole [18,24], from the 2-(substituted)-1,2-phenylenediamines [25]. Melting points were measured on a Gallenkamp apparatus and are uncorrected. The IR spectra were taken as KBr discs or in CH₂Cl₂, THF, or CHCl₃ solution using a PERKIN-ELMER 16F PC spectrometer. The 1H- and 13C-NMR spectra were obtained on a JEOL GSX 270 (270.67/67.94 MHz) or on a JEOL FX-90Q (28.69/90 MHz) spectrometer, TMS was used as an external standard. Direct ¹H-¹³C chemical shifts correlation experiments (HET-COR) were obtained using a 1024 \times 512 data point matrix and a 4566 \times 523 Hz or 1000 \times 310 Hz frequency matrix with pulse intervals 1 and 2 set at 3.145 and 0.957 ms or 3.125 and 1.613 ms, respectively, and a relaxation delay of 2 seconds. The ¹¹B NMR spectra were taken on a JEOL GSX 270 (86.84 MHz) or JEOL FX-90Q (89.55 MHz) instrument, and Et₂O-BF₃ was used as an external standard (^{11}B = 32.083971 MHz). Elemental analyses were performed by Oneida Research Services, Whitesboro, New York.

2-Propyl-1H-benzimidazole (1a). A 1.22 g (13 mmol) portion of o-phenylenediamine, 1 g (13 mmol) of butyric acid, and 10 g of polyphosphoric acid were heated under vigorous stirring to 140° C. After 4 hours, the mixture was poured into 300 mL of cold water, and then the solution was neutralized with ammonium hydroxide. The precipitate was filtered off, and the solution was concentrated to dry-

Comp.	СЗа	C4	C5	C6	C7	C7a	R₁ and/or R₂
4c⁵ 5c⁵	133.6 n.o.ª	108.5 108.5	118.4 118.4	118.4 118.3	108.5 108.6	133.6 135.0	38.7 (N–CH ₂), 16.0 (CH ₃) 44.0 (N–CH ₂ CH ₃), 38.7 (CH ₂), 32.3 (CH ₂),
6 C [₺]	132.2	109.9	119.5	118.6	108.1	131.5	20.3 (CH_2), 16.0 ($N-CH_2CH_3$), 13.8 (CH_3) 128.2 (C-12), 127.8 (C-14), 120.4 (C-13), 55.5 ($N-CH_2Ar$), 42.3 (CH_3O), 37.8 ($N-CH_2Ar$), 16.0 (CH_3), C-9.n o.*
7c [⊳]	138.5	108.1	118.6	118.6	108.1	135.8	30.6 (CH ₃)
8c [⊅]	137.2	112.4	121.8	120.6	109.3	150.3	37.8 (CH ₂), 15.4 (CH ₂)
9C ^b	137.2	112.4	121.8	120.0	109.4	150.3	42.8 (N–ĆH₂), 31.7 (ČH₂), 20.1 (CH₂), 13.7 (CH₂)
10c⁵	137.6	112.4	121.9	120.3	110.2	146.9	128.6 (C-11), 127.4 (C-12), 127.0 (C-10), 47.1 (N–CH ₂), C-9 n.o.*
11c ^{<i>b</i>}	137.9	112.4	121.9	120.0	108.9	150.1	29.2 (CH.)
12c ^b	145.6	112.0	124.5	120.8	126.0	130.1	42.1 (CH.) 16.7 (CH.)
13c [*]	145.9	111.7	124.5	120.6	126.0	127.4	47.3 (CH ₂), 34.2 (CH ₂), 22.0 (CH ₂), 13.7 (CH ₂)
14c [∌]	145.6	112.7	124.6	121.0	125.9	137.4	128.5 (C-12), 127.2 (C-11), 126.4 (C-10), 51.4 (CH ₂)
15c⁵	145.6	113.1	125.0	121.6	126.4	130.0	157.1 (Ċ-1Ũ), 128.5 (C-12), 127.6 (C-14), 121.4 (C-13), 110.2 (C-11), 54.8 (CH ₂), 46.7 (CH ₂ O), C-9 n.o.ª
16c⁵	146.8	111.3	125.8	124.7	120.8	129.7	34.6 (CH _a)
20c°	135.6	111.2	119.3	119.3	111.2	135.6	
21c°	137.6	109.0	118.6	118.6	109.0	137.6	45.0 (CH) 24.0 (CH.)
22c°	137.2	108.7	118.2	118.2	108.7	137.2	53.2 (CH) 34.9 (CH.) 26.1 (CH.) 26.1 (CH.)
23c°	136.4	112.6	120.3	120.3	112.0	150.4	
24c°	137.8	112.4	121.6	119.9	109.7	150.2	44.8 (CH) 23.4 (CH.)
25c°	136.7	112.4	121.6	119.8	109.6	150.1	52.8 (CH) 34.3 (CH.) 25.7 (CH.) 25.7 (CH.)
26c ^b	137.8	112.3	121.7	120.1	110.3	150.5	55.2 39.5 38.3 36.8 35.0 29.5 21.4
27c°	145.6	113.4	124.5	120.4	124.9	133.6	00.2, 00.0, 00.0, 00.0, 00.0, 20.0, 21.4

TABLE 8 ¹³C-NMR δ of 1,3,2-benzazaborole Compounds **5c–16c** and **20c–27c** in CDCl₃ with TMS as an External Reference

*Not observed; *at 67.9 MHz; *at 22.5 MHz.

ness, then redissolved in hot water and crystallized from ethanol to give 1.87 g (11.7 mmol, 90%) of the desired product; mp 145–147°C. MS (70 eV); m/z (%): 160 (22) [M⁺].

2-Phenyl-1H-benzimidazole (2a). As described for 1a, 2a was prepared from o-phenylenediamine and benzoic acid. The reaction afforded a white powder; mp 249.5–251°C. IR (KBr), ν (cm⁻¹): 294 (NH).

2-(Methylmercapto)benzimidazole (3a). A 2 g (13.3 mmol) portion of 17a was dissolved in 50 mL of tetrahydrofuran (THF) and mixed with 0.3 g (13.3 mmol) of metallic sodium. The mixture was refluxed for 6 hours. After addition of 5.8 mL (13.3 mmol) of CH₃I and heating for 2 hours, the solvent was eliminated in vacuum. The residue was washed with a mixture of 25 mL of CH₂Cl₂ and 75 mL of H₂O (1:3). A white solid was obtained, 1.12 g (56.0%). Mp 196°C (194–200°C [26]). IR (KBr), ν (cm⁻¹): 3448 (N–H), 1636, 1498 (C=C), 740 (C–S). MS (70 eV), *m/z* (%): 164.2 (100%).

1-Ethyl-2-methylbenzimidazole (4a). As de-

scribed for 1a, 4a was prepared from N-ethyl-1,2phenylenediamine and acetic acid. The reaction afforded the product as a brown oil in 90% yield.

1-Ethyl-2-propylbenzimidazole (5a). As described for 1a, 5a was prepared from N-ethyl-1,2-phenylenediamine and butyric acid. The reaction afforded the product as a brown oil in 75% yield.

1-Ethyl-2-(o-methoxyphenyl)benzimidazole

(6a). As described for 15a, 6a was prepared from N-ethyl-1,2-phenylenediamine and *o*-anisaldehyde. The reaction afforded the product as a brown oil in 80% yield.

2-(Methylmercapto)-1-methylbenzimidazole

(7a). A 0.5 g (3.0 mmol) portion of 3a was dissolved in 15 mL of THF, and 0.14 g (3.0 mmol) of Na was added. The mixture was refluxed for 6 hours, then 2.67 mL (3.0 mmol) of CH₃I were added and heated for 2 hours. Extraction with 50 mL of CH₂Cl₂ and 10 mL of H₂O afforded a brown liquid, 0.45 g (>90%). IR (CH₂Cl₂), ν (cm⁻¹): 1702, 1612 (C = C), 750 (C–S). MS (70 eV), m/z (%): 178.2 (100%). 2-Propylbenzoxazole (9a). As described for 1a, 9a was prepared from o-aminophenol and butyric acid. The reaction afforded the product as a brown oil in 80% yield. MS (70 eV), m/z (%): 162 (100) [M⁺].

2-Phenylbenzoxazole (10a). As described for 1a, 10a was prepared from o-aminophenol and benzoic acid. The product was an orange crystalline powder, mp 92–93°C, yield 94%.

2-(Methylmercapto)benzoxazole (11a). This compound was synthesized from 18a as described for 3a. The reaction afforded a brown oil in 40% yield. IR (CH₂Cl₂), ν (cm⁻¹): 1600, 1500 (C=C), 742 (C–S). MS (70 eV), m/z (%): 165.0 (100%).

2-Methylbenzothiazole (12a). As described for 1a, 12a was prepared from o-aminothiophenol and acetic acid. The reaction afforded a clear oil in 80% yield.

2-Propylbenzothiazole (13a). As described for 1a, 13a was prepared from o-aminothiophenol and butyric acid. The reaction afforded a brown oil in 85% yield. MS (70 eV), m/z (%): 177 (18) [M⁺].

2-Phenylbenzothiazole (14a). As described for 1a, this compound was prepared from o-aminothiophenol and benzoic acid. The product was a white crystalline powder (85% yield), mp 89–92°C.

2-(o-Methoxyphenyl)benzothiazole (15a). A 2 g (16 mmol) amount of o-aminothiophenol, 1.98 g (16 mmol) of o-anisaldehyde, and 5 mL of nitrobenzene were refluxed (200°C) during 12 hours, then the mixture was cooled for 12 hours. Crystals were filtered off and recrystallized several times from acetone to give 3 g of product as a pale yellow crystalline powder; mp 108°C, 74% yield.

2-(Methylmercapto)benzothiazole (16a). This compound was synthesized as described for 3a from 19a. The reaction afforded a brown liquid in 90% yield. IR (CH₂Cl₂), ν (cm⁻¹): 3054 (C–H), 1462, 1468 (C=C), 1266 (C–N). MS (70 eV), m/z (%): 181.0 (100%).

Benzimidazole-2-thione (17a). A solution of 2 g (18.5 mmol) of o-phenylenediamine in 8 mL of N,N'dimethylformamide and 0.7 g of NaOH (18.5 mmol) was cooled to 0°C. After the addition of 1.1 mL of CS_2 (18.5 mmol), the mixture was stirred for 20 minutes and heated to reflux for 8 hours. The excess of solvent was removed in vacuum, to give a brown solid that was washed with CHCl₃. A beige solid (1.27 g, 63.5% yield) was obtained; mp 305°C (303–304°C [27]). IR (KBr), v (cm⁻¹): 3238 (N–H), 1626, 1518 (C=C), 1190 (C=S), 702 (C–S). MS (70 eV), m/z (%): 150.1 (100%). ¹H NMR ([²H₆]DMSO, 270 MHz), δ = 11.7 (s, 2H, 1,3-H–N), 7.2 (m, 2H, 4,7-H), 7.1 (m, 2H, 5,6-H).

Benzoxazolidine-2-thione (18a). This compound was obtained as 17a from 2 g (18.34 mmol) of *o*-aminophenol, 8 mL N,N'-dimethylformamide, 0.69 g of NaOH (18.34 mmol), and 1.4 mL of CS₂ (18.34 mmol). A beige solid was obtained (1.9 g, 94.6%). Mp 312°C (193–195°C [27]). IR (KBr), *v* (cm⁻¹): 3442 (N–H), 1594, 1414 (C=C), 1070 (C=S), 738 (C–S). MS (70 eV), *m*/*z* (%): 151.1 (76%). ¹H NMR ([²H₆]DMSO, 270 MHz): δ = 7.1 (m, 2H, 4,7-H), 6.9 (m, 1H, *J*(HH) = 7.6 Hz, *J*(HH) = 7.2 Hz, *J*(HH) = 1.3 Hz, 5-H), 6.8 (m, 1H, *J*(HH) = 7.9 Hz, *J*(HH) = 7.6 Hz, *J*(HH) = 1.3 Hz, 6-H).

Benzothiazolidine-2-thione (19a). A solution of 6 g (48 mmol) of the o-aminothiophenol in 15 mL of dry ethanol and 4.31 mL of CS₂ (48 mmol) was cooled to 0°C and stirred for 10 minutes, then the mixture was heated to reflux for 8 hours. The product was purified with activated carbon, filtered, and the solvent was removed in vacuum. The solid was purified by crystallization from a saturated methanolic solution. Brown crystals (5.7 g, 96.2% yield). Mp 175–177°C (170–180°C [27]). IR (KBr), ν (cm⁻¹): 3108 (N–H), 1684, 1558 (C=C), 1034 (C=S), 752 (C– S). MS (70 eV), m/z (%): 167.1 (100%). ¹H NMR ([²H₆]DMSO, 270 MHz]): δ = 13.8 (s, v.b., 1H, H–N), 7.7 [m, 1H, J(HH) = 8.5 Hz, 7-H], 7.4 [m, 1H, J(HH) = 8.2 Hz, J(HH) = 7.3, 6-H], 7.3 [m, 2H, 4,5-H].

2-Propyl-1H-benzimidazole-borane Adduct (1b). This adduct was obtained as a white powder in quantitative yield. IR (KBr), ν (cm⁻¹): 3285 (NH) 2318, 2260 (BH), 1164 (BN).

2-Phenyl-1H-benzimidazole-borane Adduct (2b). This adduct was obtained as a white powder in quantitative yield. IR (KBr), ν (cm⁻¹): 3294 (NH), 2364, 2308, 2256 (BH), 1194 (BN). MS (70 eV), *m*/z (%): 207.3 (24) [M⁺], 194.3 (100) [M⁺– BH₂], 193.3 (26) [M⁺– BH₃].

[(*N*–*B*)-2-(*Methylmercapto*)*benzimidazole*]*borane Adduct* (**3b**). A solution of 0.2 g (1.21 mmol) of **3a** in 2 mL of THF, maintained under a nitrogen atmosphere, was added to 0.4 mL of BH₃-THF (3.0 M) at 0°C. The solvent was removed in vacuum at 0°C. An unstable beige solid was obtained in quantitative yield. IR (THF), ν (cm⁻¹): 2360 (B–H), 1436, 1420 (C=C), 1068, 1158 (N–B), 748 (C–S). 1-Ethyl-2-methylbenzimidazole-borane Adduct (4b). This adduct was obtained as a white powder in quantitative yield. IR (KBr), ν (cm⁻¹): 2388 (BH). MS (70 eV), m/z (%): 174 (10) [M⁺], 173 (100) [M⁺-H], 160 (8) [M⁺- BH₃].

1-Ethyl-2-propylbenzimidazole-borane Adduct (5b). This adduct was obtained as a white powder in quantitative yield. IR (KBr), ν (cm⁻¹): 2412, 2350, 2300, 2275 (BH), 1174 (BN). MS (70 eV), m/z (%): 201 (48) [M⁺], 199 (100) [M⁺– H₂].

1-Ethyl-2-(o-methoxyphenyl)benzimidazole-borane Adduct (6b). 6b was obtained as a white powder in quantitative yield. IR (KBr), ν (cm⁻¹): 2397, 2358, 2307. 2256 (BH), 1163 (BN).

[(N-B)-2-(Methylmercapto)-1-methylbenzimidazole]borane Adduct (7b). This adduct was prepared as described for 1b from 7a and obtained in quantitative yield. Unstable brown solid. IR (THF), v(cm⁻¹): 2368 (B–H), 1476, 1402 (C=C), 1158, 1124 (N–B), 748 (C–S).

2-Methylbenzoxazole-borane Adduct (8b). 8b was obtained as a white powder in quantitative yield. IR (KBr), ν (cm⁻¹): 2336, 2286 (BH), 1150 (BN).

2-Propylbenzoxazole-borane Adduct (9b). 9b was obtained as a white powder in quantitative yield. IR (KBr), v (cm⁻¹): 2380, 2274 (BH), 1158 (BN). MS (70 eV), m/z (%): 174 (3) [M⁺– H], 133 (4) [M⁺– C₃H₈].

2-Phenylbenzoxazole-borane Adduct (10b). This adduct was obtained as a white powder in quantitative yield. IR (KBr), ν (cm⁻¹): 2398, 2362, 2270 (BH), 1142 (BN). MS (70 eV), m/z (%): 209 (2) [M⁺], 195 (100) [M⁺- BH₃], 160 (8) [M⁺- BH₃].

[(N-B)-2(Methylmercapto)benzoxazole]borane (11b). This compound was prepared as described for 1b from 11a in quantitative yield. Unstable brown solid. IR (THF), ν (cm⁻¹): 2366 (B–H), 1506, 1452 (C=C), 1160, 1132 (N–B), 750 (C–S).

2-Methylbenzothiazole-borane Adduct (12b). 12b was obtained as a white powder in quantitative yield. IR (KBr), ν (cm⁻¹): 2398 (BH), 1158 (BN). MS (70 eV), m/z (%): 163 (11) [M⁺], 162 (100) [M⁺– H], 161 (39) [M⁺– H₂].

2-Propylbenzothiazole-borane Adduct (13b). 13b was obtained as a white powder in quantitative yield. IR (KBr), ν (cm⁻¹): 2430, 2352 (BH), 1176 (BN). MS (70 eV), m/z (%): 190 (47) [M⁺], 188 (100) [M⁺-H₂].

2-Phenylbenzothiazole-borane Adduct (14b). This adduct was obtained as a white powder in quantitative yield. IR (KBr), v (cm⁻¹): 2352, 2256 (BH).

2-(o-Methoxyphenyl)benzothiazole-borane Adduct (15b). This adduct was obtained as a white powder in quantitative yield. IR (KBr), ν (cm⁻¹): 2414, 2360, 2262 (BH), 1146 (BN). MS (70 eV), m/z(%): 154 (4) [M⁺- H], 241 (83) [M⁺- BH₃].

[(N-B)-2-(Methylmercapto)benzothiazole]borane Adduct (16b). 16b was prepared from 16a as described for 1b and was obtained in quantitative yield as an unstable yellow solid. IR (THF), ν (cm⁻¹), 2364 (B-H), 1458, 1424 (C = C), 1174, 1074 (N-B), 760 (C-S).

[(S–B)-2-(thione)benzimidazole]borane Adduct (17b). A solution of 0.2 g (1.33 mmol) of 17a in 2 mL of dry THF was cooled to -78° C under a nitrogen atmosphere. After the addition of 0.44 mL (1.33 mmol) of BH₃-THF (3.0 M), the mixture was stirred for 30 minutes. The solvent was removed in vacuum to 0°C. An unstable beige solid was obtained in quantitative yield. ¹H NMR (CD₆CO, 89.55 MHz, 0°C), δ = 7.0 (m, 4H, 4,5,6,7-H).

[(S–B)-2-(Thione)benzoxazole]borane Adduct (18b). This adduct was prepared as described for 17b from 18a and obtained in quantitative yield. Unstable beige solid. IR (THF), ν (cm⁻¹): 2368 (B–H), 1472, 1460 (C = C), 1292 (C–N), 1068 (C = S), 794 (C– S). ¹H NMR (CD₆CO, 89.55 MHz, 0°C), δ = 7.4 (m, 1H, 7-H), 7.1 (m, 3H, 4,5,6-H).

[(S-B)-2-(Thione)benzothiazole]borane Adduct (19b). This adduct was prepared *in situ*; 50 mg (0.3 mmol) of 19a was dissolved in 0.4 mL of $[^{2}H_{8}]$ THF, and 0.1 mL of BH₃-THF (3.0 M) was added at -78° C. ¹H NMR ([$^{2}H_{8}$] THF, 270 MHz, -30° C), $\delta = 7.2$ (m, 4H, 4,5,6,7-H).

1,3-Diethyl-1,3,2-benzimidazaborole (4c). In a dried and nitrogen-evacuated glass ampoule was weighed 150 mg of 4b. The ampoule was sealed under a nitrogen atmosphere and placed inside an aluminum capsule. This capsule was heated in an oil bath at 110–120°C for 1 hour to afford 4c in quantitative yield as a colorless oil. ¹H NMR (CDCl₃, 270 MHz): δ = 7.03 (m, 4H, H–Ar), 3.77 (q, 2H, N–CH₂), 1.39 (t, 3H, N–CH₂<u>CH₃</u>). ¹³C NMR (67.9 MHz, CDCl₃): δ = 133.6 (C-3a,7a), 118.4 (C-5,6), 108.5 (C-4,7), 38.7

(N-CH₂), 16.0 (CH₃). MS (70 eV), m/z (%): 174 (79) [M⁺].

1-Butyl-3-ethyl-1,3,2-benzimidazaborole (5c). Compound 5c was obtained from 5b as described for 4c (colorless oil). ¹H NMR (270 MHz, CDCl₃): δ = 7.03 (m, 4H, H–Ar), 3.76 (q, 2H, N–CH₂CH₃), 1.74 (m, 2H, N–CH₂C<u>H₂</u>), 1.40 (t, 3H, N–CH₂C<u>H₃</u>), 1.37 (sext, 2H, CH₃), 0.94 (t, 3H, CH₃).

1-(o-Methoxybenzyl)-3-ethyl-1,3,2-benzimidazaborole (6c). This compound was obtained from 6b as described for 4c (colorless oil). ¹H NMR (270 MHz, CDCl₃) δ = 7.0 (m, 8H, H-Ar), 4.96 (s, 2H, N-CH₂-Ar), 4.84 (s, 3H, CH₃O), 1.42 (q, 2H, N-CH₂CH₃), 1.09 (t, 3H, N-CH₂CH₃). ¹³C NMR (67.9 MHz, CDCl₃) δ = 132.2, 131.5, 128.2, 127.8, 120.4, 119.5, 118.6, 110.4, 108.1, 55.5, 42.3, 16, *Ci* were not observed.

1,3-Dimethyl-1,3,2-benzodiazaborole (7c). A 0.49 g (2.8 mmol) amount of 7a was mixed with 5.0 mL of BH₃-THF (3.0 M, 2.8 mmol) and heated to reflux for 6 hours. The solvent was removed in vacuum; 0.34 g (69.7%) of an unstable colorless liquid was obtained after distillation in vacuum to 55–60°C (0.25 Torr). IR (CH₂Cl₂), ν (cm⁻¹): 2588 (B–H), 1488, 1606 (C=C). –MS (70 eV), m/z (%): 145.2 (1%) [M⁺]. ¹H NMR (CDCl₃, 270 MHz) δ = 7.0 (s, 4H, 4,5,6,7-H), 3.4 (s, 3H, N–CH₃).

3-Ethyl-1,3,2-benzoxaborole (8c). Compound 8c (colorless oil) was obtained from 8b as described for 4c. ¹H NMR (270 MHz, CDCl₃), δ = 7.26 (d, 1H, 4H), 7.07 (m, 3H, 5,6,7-H), 3.86 (q, 2H, CH₂), 1.41 (t, 3H, CH₃). IR (CHCl₃), ν (cm⁻¹): 2684 (BH), 1212 (BO), 1134 (BN).

3-Butyl-1,3-benzoxaborole (9c). Compound 9c (yellow oil) was obtained from 9b as described for 4c. 'H NMR (270 MHz, CDCl₃) δ = 7.22 (m, 1H, 4-H), 7.04 (m, 1H, 5-H), 6.95 (m, 2H, 7-H), 6.94 (t, 1H, 6-H). IR (CDCl₃), ν (cm⁻¹): 2605, 2620 (BH), 1236 (BO).

3-Benzyl-1,3,2-benzoxaborole (10c). This compound (colorless oil) was obtained from 10b as described for 4c. ¹H NMR (CDCl₃) δ = 7.24 (m, 1H, 4-H), 7.20 (m, 5H, H-Ar), 6.94 (m, 2H, 5,6-H), 6.81 (m, 1H, 7-H), (s, 2H, N-CH₂). IR (CDCl₃), v (cm⁻¹): 2606 (BH).

3-Methyl-1,3,2-benzoxazaborole (11c). Compound 11c was prepared as described for 7a from 11a. A colorless liquid was distilled (54°C, 0.25 Torr), 0.82 g (37.4%). IR (CHCl₃), v (cm⁻¹): 2618 (B–H), 1706, 1616 (C=C), 1364 (B–O), 1436 (B–N). MS (70 eV), m/z (%): 132.2 (100%) [M⁺]. C₇H₈BNO, calcd. 63.24 C, 10.53 N, 6.06 H; found 63.04 C, 10.27 N, 6.03 H. ¹H NMR (CDCl₃, 270 MHz) δ = 7.2 (m, 1H, 4-H), 7.1 (m, 1H, 5-H), 7.0 (m, 2H, 7,6-H), 3.3 (s, 3H, N–CH₃).

3-Ethyl-1,3,2-benzothiazaborole (12c). This compound (colorless oil) was obtained from 12b as described for 4c. ¹H NMR (270 MHz, CDCl₃) δ = 7.63 (d, 1H, 7-H), 7.27 (t, 1H, 5-H), 7.16 (d, 1H, 4-H), 7.07 (t, 1H, 6-H), 3.88 (q, 2H, N–CH₂), 1.40 (t, 3H, N–CH₂CH₃).

3-Butyl-1,3,2-benzothiazaborole (13c). This compound was obtained from 13b as described for 4c (colorless oil). ¹H NMR (270 MHz, CDCl₃) δ = 7.66 (d, 1H, J(6,7) = 7.7, 7-H), 7.29 (t, 1H, J(5,6) = 7.1, 5-H), 7.17 (d, 1H, J(4,5) = 7.6, J(4,6) = 1.2, 4-H), 7.08 (t, 1H, 6-H), 3.89 (t, 2H, N-CH₂), 1.76 (tt, 2H, N-CH₂CH₂), 1.37(tq, 2H, CH₂), 0.95 (t, 3H, CH₃). IR (CDCl₃), ν (cm⁻¹): 2592 (BH), 1324 (BS), 1308 (BN).

3-Benzyl-1,3,2-benzothiazaborole (14c). Compound 14c was obtained from 14b as described for 4c (colorless oil). ¹H NMR (270 MHz, CDCl₃) δ = 7.68 (d, 2H, J(10,11) = 7.9, 10-H), 7.58 (d, 1H, J(6,7) = 7.6, J(5,7) = 1.9, 7-H), 7.15 (m, 3H, 11,12-H), 7.07 (t, 1H, 6-H), 6.96 (t, 1H, 5-H), 6.93 (d, 1H, J(4,5) = 7.2, 4-H), 4.97 (s, 2H, N-CH₂). IR (CDCl₃), ν (cm⁻¹): 2766 (BH). MS (70 eV), *m/z* (%): 225 (93) [M⁺].

3-(o-Methoxybenzyl)-1,3-benzothiazaborole (15c). This compound was obtained from 15b as described for 4c (colorless oil). ¹H NMR (270 MHz, CDCl₃) δ = 7.53 (d, 1H, J(6,7) = 7.5-H), 6.98 (t, 1H, 12-H), 6.95 (d, 1H, J(4,5) = 7.4, 4-H), 6.95 (t, 1H, J(5,6) = 7.4, 5-H), 6.86 (t, 1H, 13-H), 6.80 (d, 1H, 14-H), 6.59 (t, 1H, 6-H), 6.47 (d, 1H, 11-H), 5.01 (s, 2H, (N-CH₂), 3.29 (s, 3H, CH₃O). IR (CDCl₃), v (cm⁻¹): (BH), 1348 (BS), 1304 (BN).

3-Methyl-1,3,2-benzothiazaborole (16c). Compound 16c was obtained from 16b as described for 4c; it is a colorless liquid (distilled to 69°C, 0.25 Torr, 0.41 g, 42% yield). IR (THF), ν (cm⁻¹): 2618 (B–H), 1590, 1466 (C=C), 1178 (B–S). MS (70 eV), *m*/*z* (%): 149.2 (100%) [M⁺]. C₇H₈BNS (148.8), calcd 56.43 C, 9.30 N, 5.40 H; found 56.23 C, 8.93 N, 5.49 H. ¹H NMR (CDCl₃, 270 MHz) δ = 7.6 (m, 1H, 7-H), 7.3 (m, 1H, 5-H), 7.1 (m, 2H, 4,6-H), 3.4 (s, 3H, N-CH₃).

1,3-H-1,3,2-Benzimidazaborole (20c). Com-

pound 20c was prepared from 1,2-phenylenediamine and BH₃-THF, as described before [26]. Colorless liquid (distilled to 130°C, 0.25 Torr) (69%). ¹H NMR (CDCl₃, 89.55 MHz) $\delta = 6.9$ (m, 4H, 4,5,6,7-H), -IR (CCl₄), ν (cm⁻¹) 2610 (B–H).

1,3-Diisopropyl-1,3,2-benzimidazaborole (21c). This compound was obtained from 1,2-(diisopropyl)phenylene diamine as 20c in quantitative yield. IR (CHCl₃), ν (cm⁻¹): 2625 (B–H).

1,3-Dicyclohexyl-1,3,2-benzimidazaborole (22c). This compound was obtained as a white solid from 1,2-(dicyclohexyl)phenylenediamine in quantitative yield. ¹H NMR (CDCl₃, 89.55 MHz) $\delta = 6.9$ (m, 4H, 4,5,5,7-H), 3.5 (m, 2H, CH), 2.4–1.0 (m, 20H, CH₂). IR (CHCl₃), ν (cm⁻¹): 2610 (B–H).

3H-1,3,2-Benzoxaborole (23c). Compound 23c was obtained from 2-aminophenol as a colorless liquid (distilled at 107°C, 0.25 Torr, 44% yield). ¹H NMR (CDCl₃, 89.55 MHz) δ = 7.2 (d, 1H, 4-H), 7.0 (m, 3H, 4,5,6-H). IR (THF), ν (cm⁻¹): 2614 (B–H).

3-Isopropyl-1,3,2-benzoxaborole (24c). Compound 24c was obtained as a colorless liquid from 2-(N-isopropyl)aminophenol in quantitative yield. IR (CHCl₃): ν (cm⁻¹) 2627 (B–H).

3-Cyclohexyl-1,3,2-benzoxaborole (25c). This compound was obtained as a white solid in quantitative yield from 2-(N-cyclohexyl)aminophenol. ¹H NMR (CDCl₃, 89.55 MHz) δ = 7.4 (d, 1H, 4-H), 7.1 (m, 3H, 4,5,6-H), 3.6 (m, 1H, CH), 2.4–0.9 (m, 10H, CH₂). IR (CHCl₃), ν (cm⁻¹): 2626 (B–H).

3-Norbornyl-1,3,2-benzoxaborole (endo) (26c). Compound 26c was obtained as a colorless liquid (distilled at 170–190°C, 0.25 Torr) from N-[(2-hydroxy)phenyl]norbornaneimine. ¹H NMR (CDCl₃, 270 MHz) δ = 7.23 (d, 1H, J(4,5) = 7.7, 4-H), 7.05 (m, 1H, J(5,6) = 7.8, 5-H), 6.99 (m, 1H, 6-H), 6.94 (d, 1H, J(6-7) = 6.8, 7-H), 4.1 (m, 1H, 8-H), 2.52 (m, 1H, 12-H), 2.26 (m, 1H, 9-H), 2.03 (d, 1H, 14-H), 1.53 (d, 1H, 14-H), 1.5-1.6 (m, 2H, 10-Ha, 11-Ha), 1.42 (m, 1H, 13-He), 1.33 (m, 1H, 13-Ha), 1.28 (m, 1H, 11-He), 1.25 (m, 1H, 10-He). IR (CHCl₃), ν (cm⁻¹): 2624 (B–H).

1*H-1,3,2-Benzothiazaborole* (27c). Compound 27c was obtained from 2-aminothiophenol and was purified by distillation (100°C, 0.250 Torr) to give a solid; mp 52°C (74% yield). ¹H NMR (CDCl₃, 270 MHz) δ = 7.6 (d, 1H, 7-H), 7.1 (m, 2H, 5,6-H), 6.9 **TABLE 9** Crystallographic Experimental Details for 15b

Crystal Data	2-(o-Methoxyphenyl)- benzothiazole-borane adduct 15b
Formula	$C_{14}H_{14}BNOS$
Fw (g/mol)	255.15
Habit	yellow rectangular
Crystal size (mm)	$0.40 \times 0.30 \times 0.40$
F(000)	536
Crystal system	orthorombic
Space group	Pna2 ₁
a (Å) =	8.522 (2)
b (Å) =	10.869(4)
c (Å)	14.344 (6)
a (°) =	90
β (°) =	90
γ (°) =	90
$\gamma (l) =$	90
V (Å ³) =	1328.6(4)
Z	4
Systematic absences	h01: h = 2n; 0k1:k + 1 = 2n
Diffractometer	CAD4-Enraf-Nonius
Radiation (Å)	MoKa (0.71073)
Linear abs coeff cm ⁻¹	2.200
D (calc) (g cm ⁻³)	1.28
Scan type	$\omega/2\theta$
Scan width (deg)	0.6 + 0.840 tg θ
Scan speed (deg/min)	2-20
θ limits (deg)	0-25
Temperature (°C)	-80
Reflections collected	2226
Unique reflections collected	2226
Unique reflections used	2226
R (int)	1360 (Fo) ² > 3 σ (Fo) ²
Decay %	0.01
R = Σ Fol - IFc)/ Σ Fol	<1
Rw = [Σ w(IFol - IFcl-) ² /	0.047
Σ wFo ²] ^{1/2}	0.058
Goodness of fit	1.08
No. of variables	212
$\Delta \rho$ min (e/Å ³)	-0.39 (0)
$\Delta \rho$ max (e/Å ³)	0.70 (16)

(d, 1H, 4-H), 3.4 (b, 1H, BH), IR (CCl₄) v (cm⁻¹) 2608 (B–H).

6,9-(*Ethyl*)-diaza-2-oxa-1-bora-[3,4,7,8]dibenzobycyclo[4.3.0]nona-3,7-diene (6d). This compound was obtained as a colorless oil mixed with 6c (40%). 'H NMR (270 MHz, CDCl₃) δ = 7.0 (m, 8H, H–Ar), 4.96 (s, 2H, N–CH₂Ar), 1.03 (t, 2H, N–CH₂CH₃). ¹³C NMR (67.9 MHz, CDCl₃) δ = 132.8, 132.2, 128.0, 120.8, 119.0, 118.5, 109.8, 107.4, 110.2, 55.8, 36.5, 15.4; *Ci* signals were not observed. ¹¹B RMN (86.8 MHz, CDCl₃) δ = 22.8 (s, b).

8-Aza-9-oxa-2-thia-1-bora-[3,4,7,8]dibenzobycyclo[3.4.0]nona-3,7-diene (15d). Compound 15d was obtained as a colorless oil mixed with 15c (60%). ¹H NMR (270 MHz, CDCl₃) δ = 8.5 (s, 1H, H–Ar), 8.0 (d, 1H, J(H,H) = 7.9 Hz, H–Ar), 7.85 (d, 1H, J(H,H) = 7.9 Hz, H–Ar), 7.84 (d, 1H, J(H,H) = 7.9 Hz), 7.14 (m, 3H, H–Ar), 4.8 (s, 2H, CH₂). – ¹³C NMR (67.8 MHz, CDCl₃) δ = 150.0, 143.7, 128.7, 127.7, 126.0, 125.8, 125.7, 125.1, 123.3, 121.1, 119.0, 110.0, 43.2 (³J(C,H) = 5.6 Hz). ¹¹B NMR (86.8 MHz, CDCl₃) δ = 37.6 (s, b). MS (70 eV), m/z (%): 225 (100) [M⁺–CH₂].

X-ray structure determination of 15b. Single crystals of 15b were grown from a saturated THF solution at room temperature. Suitable single crystals were sealed in a glass capillary and mounted on the difractometer (ENRAF-NONIUS CAD4). The structure was solved by direct methods. H atoms were located and refined isotropically. All calculations were performed on a VAX computer using Molen. Crystallographic experimental data are summarized in Table 9.

ACKNOWLEDGMENT

We thank Chemist Efren García-Baez for obtaining the X-ray diffraction structure.

REFERENCES

- I. I. Padilla-Martínez, M. J. Rosalez-Hoz, R. Contreras, S. Kerschl, B. Wrackmeyer, *Chem. Ber.*, 127, 1994, 343.
- [2] I. I. Padilla-Martínez, A. Ariza-Castolo, R. Contreras, Magn. Reson. Chem., 31, 1993, 189.
- [3] D. Männig, H. Nöth, Angew. Chem. Int. Ed. Engl., 24, 1985, 878.
- [4] K. Burgess, M. J. Ohlmeyer, *Chem. Rev.*, 91, 1991, 1179 and references cited therein.
- [5] S. A. Westcott, H. P. Blom, T. B. Marder, R. T. Baker, J. C. Calabrese, *Inorg. Chem.*, 32, 1993, 2175.
- [6] J. M. Brown, G. C. Lloyd-Jones, J. Chem. Soc. Chem. Commun., 1992, 710.
- [7] (a) H. Nöth, B. Wrackmeyer: in P. Diehl, E. Fluck, K. Fosfeld (eds) Nuclear Magnetic Resonance Spectroscopy of Boron Compounds in NMR Basic Principles and Progress, vol. 14, Springer, Berlin (1978); (b) B.

Wrackmeyer, Annu. Rep. NMR Spectrosc., 20, 1988, 61.

- [8] (a) R. Benassi, R. Grandi, U. M. Pagnoni, F. Taddei, Magn. Reson. Chem., 24, 1986, 415; (b) R. M. Claramunt, D. Sanz, G. Boyer, J. Catalán, J. L. G. Paz, J. Elguero, Magn. Reson. Chem., 31, 1993, 791; (c) Solcániová, I. Culák, Magn. Reson. Chem., 27, 1989, 663.
 [9] P. Sténson, Acta Chem. Scand., 24, 1970, 3729.
- [9] P. Stenson, Acta Chem. Scana., 24, 1970, 3729.
- [10] I. I. Padilla-Martínez, M. J. Rosales-Hoz, C. Camacho-Camacho, H. Tlahuext, R. Contreras, *Chem. Ber.*, 129, 1996, 441.
- [11] R. S. Balestrero, D. M. Forkey, J. G. Russell, Magn. Reson. Chem., 24, 1986, 651.
- [12] T. B. Richardson, S. Gala, R. H. Crabtree, J. Am. Chem. Soc., 117, 1995, 12875.
- [13] K. K. Knapp, P. C. Keller, J. V. Rund, J. Chem. Soc. Chem. Commun., 1978, 971.
- [14] H. Singh, R. Sarin, K. Singh, R. Contreras, G. Uribe, *Tetrahedron*, 45, 1989, 5193.
- [15] (a) H. Tlahuext: Ph.D. Thesis, CINVESTAV-IPN, 1994; (b) A. Flores-Parra, G. Cadenas-Pliego, L. M. R. Martínez-Aguilera, M. L. García-Nares, R. Contreras, *Chem. Ber., 126*, 1993, 863; (c) G. Cadenas-Pliego, M. J. Rosales-Hoz, R. Contreras, A. Flores-Parra, *Tetrahedron Asymmetry*, *5*, 1994, 633.
- [16] R. Hoffmann, Angew. Chem. Int. Ed. Engl., 21, 1982, 711.
- [17] B. Yadagiri, J. W. Lown, Synth. Commun., 20, 1990, 175.
- [18] H. C. Brown: Organic Synthesis via Boranes, Wiley Interscience, New York (1975).
- [19] (a) D. W. Hein, R. J. Alheim, J. J. Leavitt, J. Am. Chem. Soc., 79, 1957, 427; (b) D. Jerchel, H. Fisher, M. Kracht, Liebigs Ann., 575, 1951, 162; (c) P. N. Preston, Chem. Rev., 74, 1974, 279; (d) J. G. Smith, I. Ho, Tetrahedron Lett., 38, 1971, 3541.
- [20] H. C. Brown, P. Heim, J. Org. Chem., 38, 1973, 912.
- [21] (a) M. Yokoyama, T. Imamoto, Synthesis, 1984, 797;
 (b) R. F. Hunter, J. Chem. Soc., 1930, 125.
- [22] H. M. J. Hendriks, P. J. M. W. Birker, G. C. Verschoor, J. Reedijk, J. Chem. Soc. Dalton Trans., 1982, 623.
- [23] F. J. Martínez-Martínez, J. L. León Romo, M. J. Rosales-Hoz, R. Contreras, *Phosphorus, Sulphur and Silicon*, 1996, 0000.
- [24] H. R. Morales, H. Tlahuext, F. Santiesteban, R. Contreras, Spectrochim. Acta, 40A, 1984, 855.
- [25] H. R. Morales, M. Pérez-Juárez, L. Cuéllar, L. Mendoza, H. Fernández, R. Contreras, Synth. Commun., 14, 1984, 1213.
- [26] C. J. Pouchert: *The Aldrich Library of Infrared Spectra*, 2nd ed., Aldrich Chemical (1974).
- [27] J. A. Van Allan, B. D. Deacon, Org. Syn., 30, 1950, 569.